导数真的帅 #
测试题,求导
\[ f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi \]$$ \ln(e^x+\sqrt{1+e^{2x}})' \\= \frac{1}{e^x+\sqrt{1+e^{2x}}} \cdot (e^x+\sqrt{1+e^{2x}})' $$
先求
$$ (e^x+\sqrt{1+e^{2x}})' \= e^x+\frac{1}{2} \cdot \frac{1}{\sqrt{1+e^{2x}} } \cdot e^{2x} \cdot 2 \qquad //链式法则 \= e^x+\frac{e^{2x}}{\sqrt{1+e^{2x}}} $$
化简
$$ \frac{e^x+\frac{e^{2x}}{\sqrt{1+e^{2x}}}}{e^x+\sqrt{1+e^{2x}}} \\ 分子:e^x+\frac{e^{2x}}{\sqrt{1+e^{2x}}}=\frac{e^{2x} \cdot \sqrt{1+e^{2x}}+e^{2x}}{\sqrt{1+e^{2x}}} \\ 原式:=\frac{\frac{e^x \cdot \sqrt{1+e^{2x}}+e^{2x}}{\sqrt{1+e^{2x}}}}{e^x+\sqrt{1+e^{2x}}} \\= \frac{e^x \cdot \sqrt{1+e^{2x}}+e^{2x}}{(e^x+\sqrt{1+e^{2x}}) \cdot \sqrt{1+e^{2x}}} \\分子提取e^x: \frac{e^x( \sqrt{1+e^{2x}}+e^x)}{(e^x+\sqrt{1+e^{2x}}) \cdot \sqrt{1+e^{2x}}} \\上下约分: \frac{e^x}{\sqrt{1+e^{2x}}} $$
结果
$$ \frac{e^x}{\sqrt{1+e^{2x}}} $$
$$ \ln(e^x+\sqrt{1+e^{2x}})' $$